谷歌浏览器插件
订阅小程序
在清言上使用

Trail Protects Against Endothelial Dysfunction In Vivo And Inhibits Angiotensin-Ii Induced Oxidative Stress In Vascular Endothelial Cells In Vitro

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY(2018)

引用 33|浏览11
暂无评分
摘要
The vascular endothelium is critical for maintenance of cardiovascular homeostasis. Endothelial dysfunction is a key event of atherosclerosis, with oxidative stress mediated by reactive oxygen species (ROS) playing a major role. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is increasingly recognised to play a protective role in atherosclerosis, however the molecular mechanisms by which it exerts its beneficial effects are unclear. Here we examined if TRAIL could attenuate vascular oxidative stress and improve endothelial cell (EC) function. In coronary artery disease patients, plasma TRAIL levels were significantly reduced compared to healthy individuals, and negatively correlated with the levels of circulating 8-iso Prostaglandin F2α, a marker of in vivo oxidative stress. In vivo, high-fat fed, atherosclerotic Trail-/-Apoe-/- mice exhibited a significant impairment in endothelial-dependent vasorelaxation, which correlated with increased vascular ROS and 4-hydroxynonenal compared to Apoe-/- mice. Endothelial permeability measured by Evan's blue dye extravasation was increased in several organs of Trail-/- mice compared to wild-type mice, which correlated with a decrease in VE-cadherin expression. In vitro in ECs, angiotensin II (AngII)-induced ROS generation involving the mitochondria, NADPH oxidase-4 (NOX-4) and eNOS, was inhibited by pre-treatment with TRAIL. Furthermore, AngII-augmented VCAM-1 expression and monocyte adhesion to ECs was inhibited by TRAIL. Finally, AngII reduced VE-cadherin expression and redistributed this protein, all of which was brought back to baseline by TRAIL pre-treatment. These findings demonstrate for the first time that TRAIL protects against several forms of endothelial dysfunction involving its ability to control EC ROS generation. Understanding the role TRAIL plays in normal physiology and disease, may lead to potential new therapies to improve endothelial function and atherosclerosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要