谷歌浏览器插件
订阅小程序
在清言上使用

Penalized Co-Inertia Analysis with Applications to -Omics Data.

Bioinformatics(2018)

引用 20|浏览24
暂无评分
摘要
Motivation Co-inertia analysis (CIA) is a multivariate statistical analysis method that can assess relationships and trends in two sets of data. Recently CIA has been used for an integrative analysis of multiple high-dimensional omics data. However, for classical CIA, all elements in the loading vectors are nonzero, presenting a challenge for the interpretation when analyzing omics data. For other multivariate statistical methods such as canonical correlation analysis (CCA), penalized least squares (PLS), various approaches have been proposed to produce sparse loading vectors via l(1)-penalization/constraint. We propose a novel CIA method that uses l(1)-penalization to induce sparsity in estimators of loading vectors. Our method simultaneously conducts model fitting and variable selection. Also, we propose another CIA method that incorporates structure/network information such as those from functional genomics, besides using sparsity penalty so that one can get biologically meaningful and interpretable results. Results Extensive simulations demonstrate that our proposed penalized CIA methods achieve the best or close to the best performance compared to the existing CIA method in terms of feature selection and recovery of true loading vectors. Also, we apply our methods to the integrative analysis of gene expression data and protein abundance data from the NCI-60 cancer cell lines. Our analysis of the NCI-60 cancer cell line data reveals meaningful variables for cancer diseases and biologically meaningful results that are consistent with previous studies. Availability and implementation Our algorithms are implemented as an R package which is freely available at: https://www.med.upenn.edu/long-lab/. Supplementary information Supplementary data are available at Bioinformatics online.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要