De Novo Assembly Of Wheat Root Transcriptomes And Transcriptional Signature Of Longitudinal Differentiation

PLOS ONE(2018)

引用 5|浏览3
暂无评分
摘要
Hidden underground, root systems constitute an important part of the plant for its development, nourishment and sensing the soil environment around it, but we know very little about its genetic regulation in crop plants like wheat. In the present study, we de novo assembled the root transcriptomes in reference cultivar Chinese Spring from RNA-seq reads generated by the 454-GS-FLX and HiSeq platforms. The FLX reads were assembled into 24,986 transcripts with completeness of 54.84%, and the HiSeq reads were assembled into 91,543 high-confidence protein-coding transcripts, 2,404 low-confidence protein-coding transcripts, and 13,181 non-coding transcripts with the completeness of >90%. Combining the FLX and HiSeq assemblies, we assembled a root transcriptome of 92,335 ORF-containing transcripts. Approximately 7% of the coding transcripts and similar to 2% non-coding transcripts are not present in the current wheat genome assembly. Functional annotation of both assemblies showed similar gene ontology patterns and that similar to 7% coding and >5% non-coding transcripts are root-specific. Transcription quantification identified 1,728 differentially expressed transcripts between root tips and maturation zone, and functional annotation of these transcripts captured a transcriptional signature of longitudinal development of wheat root. With the transcriptomic resources developed, this study provided the first view of wheat root transcriptome under different developmental zones and laid a foundation for molecular studies of wheat root development and growth using a reverse genetic approach.
更多
查看译文
关键词
wheat root transcriptomes,transcriptional signature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要