AI helps you reading Science
AI Insight
AI extracts a summary of this paper
Weibo:
The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment.
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, no. 2 (2014): 279-284
WOS
Abstract
We report the low-frequency resonant Raman spectrum of methylammonium lead-iodide, a prototypical perovskite for solar cells applications, on mesoporous Al2O3. The measured spectrum assignment is assisted by DFT simulations of the Raman spectra of suitable periodic and model systems. The bands at 62 and 94 cm(-1) are assigned respectively...More
Code:
Data:
Introduction
- Hybrid lead−halide perovskites are revolutionizing the photovoltaic landscape, having been claimed as “the big thing in photovoltaics”.1 From their first application in 2009 by Kojima et al as solar cells sensitizers,[2] photovoltaic devices based on these materials showed a fast and continuous increase in their performance,[2−14] with recent top efficiency exceeding 15%.
- The authors report a combined experimental and theoretical Raman vibrational analysis of MAPbI3 in the low-frequency region, where the bands associated to the vibrations of the interacting inorganic/organic constituents are expected.
Highlights
- Hybrid lead−halide perovskites are revolutionizing the photovoltaic landscape, having been claimed as “the big thing in photovoltaics”.1. From their first application in 2009 by Kojima et al as solar cells sensitizers,[2] photovoltaic devices based on these materials showed a fast and continuous increase in their performance,[2−14] with recent top efficiency exceeding 15%
- The assignment of the Raman spectrum of MAPbI3 is supported by first-principles DFT calculations[38,39] carried out on extended periodic systems and, for interpretative purposes, on simplified models. While this type of analyses have been applied to perovskites, especially in relation to their ferroelectric properties,[40−47] to the best of our knowledge this is the first report on the Raman spectrum of the prototypical MAPbI3 perovskite, along with the first DFT simulation of the vibrational spectra of hybrid perovskites
- Since the three models differ mainly in the orientation of the organic cations, the fact that the region around the experimental band at 119 cm−1 is differently described in the three simulated structures suggests that this is probably associated with the MA libration modes
- The fact that the Raman spectra calculated on the different models are quite different in the 100−150 cm−1 region suggests that the band at 119 cm−1 is probably associated to the motion of the organic cations
- Our analysis shows that the frequency of the MA torsional modes in the crystal structures may be the result of two opposite effects, associated to the interactions between the cation and the inorganic cage
Results
- Since the three models differ mainly in the orientation of the organic cations, the fact that the region around the experimental band at 119 cm−1 is differently described in the three simulated structures suggests that this is probably associated with the MA libration modes.
- The fact that the Raman spectra calculated on the different models are quite different in the 100−150 cm−1 region suggests that the band at 119 cm−1 is probably associated to the motion of the organic cations.
- The theoretical spectra calculated for the three investigated structures do not show any normal mode, neither Raman active or inactive, in the range 200−280 cm−1, though the results could be sensitive to both DFT functional and anharmonic effects, as the authors will explain below.
- The large torsional frequencies difference predicted for the two tetragonal structures compared to those calculated for the orthorhombic structure may seem surprising at first glance, but it is not totally unexpected considering the large distribution of torsional frequencies reported in the literature for MA-based compounds.[27,33−35] comparing the theoretical spectra of Figure 1, the authors observe that the Raman intensity predicted for the torsional modes increases with the structural disorder, in the order tet-1 > tet-2 > ortho.
- The calculated vibrational frequency of the torsional mode of the isolated MA cation at its optimized structure is predicted at 309 cm−1 by LDA (278 cm−1 when optimized by the same method used for periodic simulations in a large supercell) in good agreement with previous results.[36,37] This mode is predicted to be Raman inactive, consistent with the C3v symmetry of the isolated MA cation.
- It is not unreasonable to speculate that a combination of DFT functional and anharmonic effects could down-shift the calculated torsional modes for the tetragonal structures to ∼250 cm−1, as in the experimental Raman spectrum.
Conclusion
- The torsional mode frequency calculated in the harmonic approximation by LDA for the isolated MA cations at their crystal structures geometries are strongly blue-shifted, by more than 150 cm−1.
- On the basis of electronic structure calculations, the authors have elucidated how the interactions between the organic cations and the inorganic counterpart may affect the vibrational frequency and the Raman broad and intensity of unresolved the MA band at torsional 200−340 mode cm−1 in is
Tables
- Table1: Vibrational Frequencies (ω) and Raman Intensities
Funding
- We thank FP7-NMP-2013 project 604032 “MESO” for financial support
Reference
- (1) Bisquert, J. The Swift Surge of Perovskite Photovoltaics. J. Phys. Chem. Lett. 2013, 4, 2597−2598.
- Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623−3630.
- (2) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050−6051.
- (3) Im, J.-H.; Lee, C.-R.; Lee; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088−4093.
- (4) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M.; et al. All-Solid-State Dye-Sensitized Solar Cells With High Efficiency. Nature 2012, 485, 486−489.
- (5) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 463−467.
- (6) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, Md. K.; Graẗ zel, M. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134, 17396− 17399.
- (7) Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 Single Crystals Delivering Enhanced Mobility And Optoelectronic Device Performance. Nature 2013, 495, 215−219.
- (8) Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H.-L; Jen, A. K.-J; Snaith, H. J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 2013, 13, 3124−3128.
- (9) M. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells By Vapour Deposition. Nature 2013, 501, 395−398.
- (10) J. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Peng, G.; Nazeeruddin, Md. K.; Graẗ zel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316−319.
- (11) Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-J.; Sarkar, A.; Nazeeruddin, Md. K.; et al. Efficient Inorganic−Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors. Nat. Photon 2013, 7, 486−491.
- (12) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 234, 341− 344.
- (13) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Graẗ zel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron and Hole-Transport Lengths In Organic−Inorganic CH3NH3PbI3. Science 2013, 342, 344−347.
- (14) Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High Open-Circuit Voltage Solar Cells Based on Organic−Inorganic Lead Bromide Perovskite. J. Phys. Chem. Lett. 2013, 4, 897−902.
- (15) Poglitsch, A.; Weber, D. Dynamic Disorder in Methylammoniumtrihalogenoplumbates (II) Observed by Millimeterwave Spectroscopy. J. Chem. Phys. 1987, 87, 6373−6378.
- (16) Baikie, T.; Fang, Y.; Kadro, J. M; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graẗ zel, M.; White, T. J. Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State
- Sensitised Solar Cell Applications. J. Mater. Chem. A 2013, 1, 5628−
- (17) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G.
- Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019−9038.
- (18) Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G.; et al. MAPbI3−xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chem. Mater. 2013, 25, 4613−4618.
- (19) Mosconi, E.; Amat, A.; Nazeeruddin, Md. K.; Graẗ zel, M.; De
- Perovskites for Photovoltaic Applications. J. Phys. Chem. C 2013, 117, 13902−13913.
- (20) Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. Importance of Spin−Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. J. Phys. Chem. Lett. 2013, 4, 2999−3005.
- (21) Brivio, F.; Walker, A. B.; Walsh, A. Structural and Electronic
- Photovoltaics from First-Principles. Appl. Phys. Lett. 2013, 1, 042111.
- (22) Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and
- IR Spectroscopic Studies of Phase Transitions in Methylammonium Trihalogenoplumbates (II). J. Phys. Chem. Solids 1990, 51, 1383−1395.
- (23) Khilji, M. Y.; Sherman, W. F.; Wilkinson, G. R. Raman Study of Three Polytypes of PbI2. J. Raman. Spectrosc. 1982, 13, 127−133.
- (24) Baltog, I.; Lefrant, S.; Mihut, L.; Mondescu, R. Resonant Raman
- Scattering near the Band Gap in 4H-PbI2 Crystals. Phys. Status Solidi B 1993, 176, 247−254.
- (25) Calistru, D. M.; Mihut, L.; Lefrant, S.; Baltog, I. Identification of the Symmetry of Phonon Modes in CsPbCl3 in Phase IV by Raman and Resonance-Raman Scattering. J. Appl. Phys. 1997, 82, 5391−5395.
- (26) Baibarac, M.; Preda, N.; Mihut, L.; Baltog, I.; Lefrant, S.; Mevellec, J. Y. On the Optical Properties of Micro- and Nanometric Size PbI2 Particles. J. Phys.: Condens. Matter 2004, 16, 2345−2356.
- (27) Maalej, a.; Abid, Y.; Kellel, A.; Daoud, A.; Lautie,́ A.; Romain, F.
- Phase Transitions and Crystal Dynamics in the Cubic Perovskite CH3NH3PbCl3. Solid State Commun. 1997, 5, 279−284.
- (28) Dammak, T.; Fourati, N.; Boughzala, H.; Mlayah, A.; Abid, Y. X-
- ray Diffraction, Vibrational and Photoluminescence Studies of the Self-Organized Quantum Well Crystal H3N(CH2)6NH3PbBr4. J. Lumin. 2007, 127, 404−408.
- (29) Elleuch, S.; Abid, Y.; Mlayah, A.; Boughzala, H. Vibrational and Optical Properties of a One-Dimensional Organic−Inorganic Crystal [C6H14N]PbI3. J. Raman Spectrosc. 2008, 39, 786−792.
- (30) Dammak, T.; Elleuch, S.; Bougzhala, H.; Mlayah, A.; Chtourou, R.; Abid, Y. Synthesis, Vibrational and Optical Properties of a New Three-Layered Organic−Inorganic Perovskite (C4H9NH3)4Pb3I4Br6. J. Lumin. 2009, 129, 893−897.
- (31) Samet, A.; Ben Ahmed, A.; Mlayah, A.; Boughzala, H.; Hlil, E.
- K.; Abid, Y. Optical Properties and Ab Initio Study on the Hybrid Organic−Inorganic Material [(CH3)2NH2]3[BiI6]. J. Mol. Struct. 2011, 977, 72−77.
- (32) Kessentini, A.; Belhouchet, M.; Suñol, J. J.; Abid, Y.; Mhiri, T.
- Synthesis, Crystal Structure, Vibrational Spectra, Optical Properties and Theoretical Investigation of Bis(2-aminobenzimidazolium) Tetraiodocadmate. J. Mol. Struct. 2013, 1039, 207−213.
- (33) Waldron, R. D. The Infrared Spectra of Three Solid Phases of Methyl Ammonium Chloride. J. Chem. Phys. 1953, 21, 734−741.
- (34) Theó ret, A.; Sandorfy, C. The Infrared Spectra of Solid Methylammonium Halide - II. Spectrochim. Acta 1967, 23A, 519−542.
- (35) Jiang, Z. T.; James, B. D.; Liesegang, J.; Tan, K. L.; Gopalakrishnan, R.; Novak, I. Investigation of the Ferroelectric
- Phase Transition in (CH3NH3)HgCl3. J. Phys. Chem. Solids 1995, 56, 277−283.
- (36) DeFrees, D. J.; McLean, A. D. Molecular Orbital Predictions of the Vibrational Frequencies of Some Molecular Ions. J. Chem. Phys. 1985, 82, 333−341.
- (37) Zeroka, D.; Jensen, J. O. Infrared Spectra of Some Isotopomers of Methylamine and the Methylammonium Ion: A Theoretical Study. J. Mol. Struct.: THEOCHEM 1998, 425, 181−192.
- (38) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Coccioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys: Condens. Matter 2009, 21, 395502.
- (39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 09, revision C.01; Gaussian, Inc.: Wallingford, CT, 2009.
- (40) Zhong, W.; King-Smith, R. D.; Vanderbilt, D. Giant LO−TO Splittings in Perovskite Ferroelectrics. Phys. Rev. B 1994, 72, 3618− 3621.
- (41) Waghmare, U. V.; Rabe, K. M. Ab Initio Statistical Mechanics of the Ferroelectric Phase Transition in PbTiO3. Phys. Rev. B 1997, 55, 6161−6173.
- (42) Cora,̀ F.; Catlow, C. R. A. QM Investigations on PerovskiteStructured Transition Metal Oxides: Bulk, Surfaces and Interfaces. Faraday Discuss. 1999, 114, 421−442.
- (43) Ghosez, Ph.; Cockayne, E.; Waghmare, U. V.; Rabe, K. M. Lattice Dynamics of BaTiO3, PbTiO3, and PbZrO3: A Comparative First-Principles Study. Phys. Rev. B 1999, 60, 836−843.
- (44) Piskunov, S.; Heifets, E.; Eglitis, R. I.; Borstel, G. Bulk Properties and Electronic Structure of SrTiO3, BaTiO3, PbTiO3 Perovskites: An Ab Initio HF/DFT Study. Comput. Mater. Sci. 2004, 29, 165−178.
- (45) Wahl, R.; Vogtenhuber, D.; Kresse, G. SrTiO3 and BaTiO3 Revisited Using the Projector Augmented Wave Method: Performance of Hybrid and Semilocal Functionals. Phys. Rev. B 2008, 78, 104116.
- (46) Evarestov, R. A. Hybrid Density Functional Theory LCAO Calculations on Phonons in Ba(Ti,Zr, Hf,)O3. Phys. Rev. B 2011, 83, 014105.
- (47) Moreira, E.; Henriques, J. M.; Alzevedo, D. L.; Caetano, E. W. S.; Freire, V. N.; Albuquerque, E. L. Structural, Optoelectronic, Infrared and Raman Spectra of Orthorhombic SrSnO3 from DFT Calculations. J. Solid State Chem. 2011, 184, 921−928.
- (48) Pyykkö, P. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988, 88, 563−594.
- (49) Berces, A. Harmonic Vibrational Frequencies and Force Constants of M(CO)5CX (M) Cr, Mo, W; X) O, S, Se). The Performance of Density Functional Theory and the Influence of Relativistic Effects. J. Phys. Chem. 1996, 100, 16538−16544.
- (50) Barone, V. Vibrational Zero-Point Energies and Thermodynamic Functions beyond the Harmonic Approximation. J. Chem. Phys. 2004, 120, 3059−3065.
- (51) Mitzi, D. B. Templating and Structural Engineering in Organic− Inorganic Perovskites. J. Chem. Soc., Dalton Trans. 2001, 1−12.
Tags
Comments
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn