Arsenic (V) bioconcentration kinetics in freshwater macroinvertebrates and periphyton is influenced by pH.

Environmental Pollution(2017)

引用 15|浏览16
暂无评分
摘要
Arsenic is an important environmental pollutant whose speciation and mobility in freshwater food webs is complex. Few studies have characterized uptake and efflux rates of arsenic in aquatic benthic invertebrates. Further, we lack a fundamental understanding of how pH influences uptake kinetics in these organisms or how this key environmental variable could alter dietary exposure for primary consumers. Here we used a radiotracer approach to characterize arsenate accumulation dynamics in benthic invertebrates, the influence of pH on uptake in a subset of these organisms, and the influence of pH on uptake of arsenate by periphyton - an important food source at the base of aquatic food webs. Uptake rate constants (Ku) from aqueous exposure were modest, ranging from ∼0.001 L g−1d−1 in three species of mayfly to 0.06 L g−1d−1in Psephenus herricki. Efflux rate constants ranged from ∼0.03 d−1 in Corbicula fluminea to ∼0.3 d−1 in the mayfly Isonychia sp, and were generally high. Arsenate uptake decreased with increasing pH, which may be a function of increased adsorption at lower pHs. A similar but much stronger correlation was observed for periphyton where Ku decreased from ∼3.0 L g−1d−1 at 6.5 pH to ∼0.7 L g−1d−1 at 8.5 pH, suggesting that site specific pH could significantly alter arsenic exposure, particularly for primary consumers. Together, these findings shed light on the complexity of arsenic bioavailability and help explain observed differences reported in the literature.
更多
查看译文
关键词
Arsenic,pH,Flux,Invertebrate,Periphyton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要