Autophagy maintains the integrity of endothelial barrier in LPS-induced lung injury.

JOURNAL OF CELLULAR PHYSIOLOGY(2018)

引用 64|浏览23
暂无评分
摘要
Understanding the role and underlying regulation mechanism of autophagy in lipopolysaccharide-induced lung injury (LPS-LI) may provide potentially new pharmacological targets for treatment of acute lung injury. The aim of this study was to investigate the functional significance of autophagy in LPS-LI. The autophagy of human pulmonary microvascular endothelial cells (HPMVECs) and mice was inhibited before they were challenged with LPS. In vitro, permeability, vitality, and the LDH release rate of the cells were detected, the zonula occluden-1 (ZO-1) expression and the stress fiber formation were determined. In vivo, the lung injury was assessed. We found LPS caused high permeability and increased lactate dehydrogenase (LDH) release rate, lowered viability of the cells, inhibited the ZO-1 expression and induced stress fiber formation, these effects were further aggravated by prohibiting the level of autophagy. Consistently, in in vivo experiments, LPS-induced serious lung injury, which was reflected as edema, leukocyte infiltration and hemorrhage in lung tissue, and the high concentration of pro-inflammation cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta in bronchoalveolar lavage fluid (BALF). Inhibiting autophagy further exacerbated LPS-LI. It appears that autophagy played a protective role in LPS-LI in part through restricting the injury of lung microvascular barrier.
更多
查看译文
关键词
acute lung injury,autophagy,lipopolysaccharide,microvascular barrier
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要