Tissue Concentrations of Zinc, Iron, Copper, and Magnesium During the Phases of Full Thickness Wound Healing in a Rodent Model

Biological trace element research(2018)

引用 56|浏览5
暂无评分
摘要
Wound healing is a complex orchestration of processes involving cell proliferation, migration, differentiation, anabolism, and catabolism in order to restore skin continuity. Within these processes, elements such as metallic ions are involved due to their implications in cell behavior and enzymatic activity regulation. This study analyzed the kinetics of zinc, iron, copper and magnesium concentrations in a full thickness open wound rat model over 14 days. We made wounds with a diameter of 6 mm on the back of Lewis rats and let them heal naturally prior to analysis by histology and inductively coupled plasma mass spectrometry analysis. Histological and immunofluorescence analysis confirmed an inflammation phase until 7 days, epithelial proliferation phase from 16 h to 10 days, and remodeling phase from 7 days onward. These defined phases were correlated with the measured metal element kinetics. Zinc concentrations showed an inverted parabolic progression between 30.4 and a maximum of 39.9 μg/g dry weight. Magnesium values had a similar pattern between 283 and 499 μg/g dry weight. Copper concentrations, on the other hand, followed an inverted sigmoid trend with a decrease from 9.8 to 1.5 μg/g dry weight. Iron had a slight decrease in concentration for 24 h followed by an increase to a maximum of 466 μg/g dry weight. In conclusion, zinc, iron, and copper, even though differing in their total mass within the wound, exhibited concentration curve transitions at day 3. Interestingly, this time point correlates with the maximum proliferating keratinocyte rate during the proliferation phase.
更多
查看译文
关键词
Copper,Iron,Magnesium,Metal,Skin wound healing,Zinc
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要