谷歌浏览器插件
订阅小程序
在清言上使用

The Role of TCPTP on Leptin Effects on Astrocyte Morphology

Molecular and cellular endocrinology(2019)

引用 6|浏览24
暂无评分
摘要
Leptin and LPS has been implicated in the development of hypothalamic astrogliosis in rodents. Astrocytes, which are interconnected by gap junction proteins, have emerged as important players in the control of energy homeostasis exerted by the hypothalamus. To investigate the hypothesis of action of T-cell protein tyrosine phosphatase (TCPTP) on the astrocyte morphology, astrocytes from the hypothalamus of one-day-old rats were stimulated with leptin and LPS (used as a positive control). Leptin and LPS induced a marked increase in astrocyte size, an increase in Ptpn2 (TCPTP gene) and gap junction alpha-1 protein, - Gja1 (connexin 43 - CX43 gene) mRNA expression and a decrease in gap junction protein, alpha 6 - Gja6 (CX30 gene) mRNA expression. Remarkably, these effects on astrocytes morphology and connexins were prevented by Ptpn2 siRNA. Astrocytes are known to produce cytokines; here we show that TCPTP acts as an important regulator of the cytokines and it possesses a reciprocal interplay with protein tyrosine phosphatase 1B (PTP1B). Our findings demonstrate that leptin and LPS alter astrocyte morphology by increasing TCPTP, which in turn modulates connexin 30 (CX30) and connexin 43 (CX43) expression. TCPTP and PTP1B seem to act in the regulation of cytokine production in astrocytes.
更多
查看译文
关键词
Hypothalamus,Glia,Leptin,TCPTP,CX30,CX43
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要