谷歌浏览器插件
订阅小程序
在清言上使用

1,3,5-Triazine-based polymer: synthesis, characterization and application for immobilization of silver nanoparticles

Journal of Polymer Research(2017)

引用 15|浏览4
暂无评分
摘要
Six s-triazine-based polymers were prepared through the nucleophilic reaction of 2,4-dichloro-6-substituted s-triazine derivatives with 1,4-diaminobutane employing conventional heating and microwave irradiation. The prepared polymers were characterized by using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). The microwave irradiation provides the target polymers in less reaction time with higher yields and purities; the results from the TGA revealed that microwave technique enhanced the thermal behavior of the prepared polymers. The effect of substituent on the thermal stability of polymers has the main factor, where incorporation of the aromatic ring on the triazine core in the prepared polymers increased their thermal stability. As a model for immobilization of silver nanoparticles (AgNPs), p-methoxy-s-triazine- 1,4-butadiamine (BDPMA) copolymer was used as an example in the presence and absence of hydrazine-hydrate. AgNPs were characterized by zeta potential, scanning electron microscope (SEM), X-ray powder diffraction analysis (XRD) and transmission electron microscope (TEM). Best results in term of particle size was obtained by using BDPMA in the absence of hydrazine hydrate, where the particle size of AgNPs was less than 20 nm as observed from TEM. Graphical Abstract
更多
查看译文
关键词
s-Triazine based polymer,Nucleophilic substitution,Microwave synthesis,Thermal stability,Silver nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要