The antinociceptive effect of anterior pretectal nucleus stimulation is mediated by distinct neurotransmitter mechanisms in descending pain pathways.

Brain research bulletin(2019)

引用 5|浏览12
暂无评分
摘要
Electrical stimulation of the anterior pretectal nucleus (APtN) activates two descending pain inhibitory pathways. One of these pathways relays in the ipsilateral lateral paragigantocellular nucleus (LPGi), whereas the other pathway relays in the contralateral pedunculopontine tegmental nucleus (PPTg). Antinociceptive effect of APtN stimulation has been seen in various pain models in the rodents. Similarly, LPGi or PPTg stimulation results in higher pain thresholds. Descending antinociceptive pathways activated by electrical APtN stimulation have been elucidated, but the underlying neurotransmitter mechanisms involved have not been clarified yet. This study investigates the role that endogenous signaling plays in the ipsilateral LPGi or contralateral PPTg after the APtN is stimulated in the tail-flick test. First, we submitted rats to excitotoxic injection of N-methyl-d-aspartate (NMDA) into the contralateral PPTg. Then, we examined whether blockage of NMDA (AP-7), serotonergic (methysergide), or opioid (naloxone) receptors in the ipsilateral LPGi is required for APtN stimulation-evoked analgesia (SEA). Likewise, we examined the effects of antagonists of NMDA, serotonergic, or cholinergic nicotinic (mecamylamine) receptors on the contralateral PPTg in ipsilateral LPGi-lesioned rats. Our results confirmed that APtN stimulation activates two pain inhibitory pathways and showed that endogenous opioid signaling in the ipsilateral LPGi appears to be necessary for APtN SEA and for endogenous NMDA, serotoninergic, and nicotinergic signaling in the contralateral PPTg.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要