Time-lapse three-dimensional imaging of crack propagation in beetle cuticle.

Acta biomaterialia(2019)

引用 13|浏览14
暂无评分
摘要
Arthropod cuticle has extraordinary properties. It is very stiff and tough whilst being lightweight, yet it is made of rather ordinary constituents. This desirable combination of properties results from a hierarchical structure, but we currently have a poor understanding of how this impedes damage propagation. Here we use non-destructive, time-lapse in situ tensile testing within an X-ray nanotomography (nCT) system to visualise crack progression through dry beetle elytron (wing case) cuticle in 3D. We find that its hierarchical pseudo-orthogonal laminated microstructure exploits many extrinsic toughening mechanisms, including crack deflection, fibre and laminate pull-out and crack bridging. We highlight lessons to be learned in the design of engineering structures from the toughening methods employed. STATEMENT OF SIGNIFICANCE: We present the first comprehensive study of the damage and toughening mechanisms within arthropod cuticle in a 3D time-lapse manner, using X-ray nanotomography during crack growth. This technique allows lamina to be isolated despite being convex, which limits 2D analysis of microstructure. We report toughening mechanisms previously unobserved in unmineralised cuticle such as crack deflection, fibre and laminate pull-out and crack bridging; and provide insights into the effects of hierarchical microstructure on crack propagation. Ultimately the benefits of the hierarchical microstructure found here can not only be used to improve biomimetic design, but also helps us to understand the remarkable success of arthropods on Earth.
更多
查看译文
关键词
Arthropod cuticle,Time-lapse imaging,X-ray tomography,Biological composites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要