Loss of Function of the E1 - Like-b Gene Associates With Early Flowering Under Long-Day Conditions in Soybean.

FRONTIERS IN PLANT SCIENCE(2019)

引用 38|浏览8
暂无评分
摘要
Photoperiod response of flowering determines plant adaptation to different latitudes. Soybean, a short-day plant, has gained the ability to flower under long-day conditions during the growing season at higher latitudes, mainly through dysfunction of phytochrome A genes (E3 and E4) and the floral repressor E1. In this study, we identified a novel molecular genetic basis of photoperiod insensitivity in Far-Eastern Russian soybean cultivars. By testcrossing these cultivars with a Canadian cultivar Harosoy near-isogenic line for a recessive e3 allele, followed by association tests and fine mapping, we determined that the insensitivity was inherited as a single recessive gene located in an 842-kb interval in the pericentromeric region of chromosome 4, where E1-Like b (E1Lb), a homoeolog of E1, is located. Sequencing analysis detected a single-nucleotide deletion in the coding sequence of the gene in insensitive cultivars, which generated a premature stop codon. Near-isogenic lines (NILs) for the loss-of-function allele (designated e1lb) exhibited upregulated expression of soybean FLOWERING LOCUS T (FT) orthologs, FT2a and FT5a, and flowered earlier than those for E1Lb under long-day conditions in both the e3/E4 and E3/E4 genetic backgrounds. These NILs further lacked the inhibitory effect on flowering by far-red light-enriched long-day conditions, which is mediated by E4, but not that of red-light-enriched long-day conditions, which is mediated by E3. These findings suggest that E1Lb retards flowering under long-day conditions by repressing the expression of FT2a and FT5a independently of E1. This loss-of-function allele can be used as a new resource in breeding of photoperiod-insensitive cultivars, and may improve our understanding of the function of the E1 family genes in the photoperiod responses of flowering in soybean.
更多
查看译文
关键词
soybean,Glycine max,flowering,E1Lb,photoperiodism,adaptation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要