Elevated atmospheric humidity shapes the carbon cycle of a silver birch forest ecosystem: A FAHM study.

Science of The Total Environment(2019)

引用 9|浏览16
暂无评分
摘要
Processes determining the carbon (C) balance of a forest ecosystem are influenced by a number of climatic and environmental factors. In Northern Europe, a rise in atmospheric humidity and precipitation is predicted. The study aims to ascertain the effect of elevated atmospheric humidity on the components of the C budget and on the C-sequestration capacity of a young birch forest. Biomass production, soil respiration, and other C fluxes were measured in young silver birch (Betula pendula Roth) stands growing on the Free Air Humidity Manipulation (FAHM) experimental site, located in South-East Estonia. The C input fluxes: C sequestration in trees and understory, litter input into soil, and methane oxidation, as well as C output fluxes: soil heterotrophic respiration and C leaching were estimated.
更多
查看译文
关键词
Net primary production,Carbon sequestration,Climate change,Silver birch forest,Soil respiration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要