Fast Bag-Of-Words Candidate Selection In Content-Based Instance Retrieval Systems

2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)(2018)

引用 3|浏览53
暂无评分
摘要
Many content-based image search and instance retrieval systems implement bag-of-visual-words strategies for candidate selection. Visual processing of an image results in hundreds of visual words that make up a document, and these words are used to build an inverted index. Query processing then consists of an initial candidate selection phase that queries the inverted index, followed by more complex reranking of the candidates using various image features. The initial phase typically uses disjunctive top-k query processing algorithms originally proposed for searching text collections.Our objective in this paper is to optimize the performance of disjunctive top-k computation for candidate selection in content-based instance retrieval systems. While there has been extensive previous work on optimizing this phase for textual search engines, we are unaware of any published work that studies this problem for instance retrieval, where both index and query data are quite different from the distributions commonly found and exploited in the textual case. Using data from a commercial large-scale instance retrieval system, we address this challenge in three steps. First, we analyze the quantitative properties of index structures and queries in the system, and discuss how they differ from the case of text retrieval. Second, we describe an optimized term-at-a-time retrieval strategy that significantly outperforms baseline term-at-a-time and document-at-a-time strategies, achieving up to 66% speed-up over the most efficient baseline. Finally, we show that due to the different properties of the data, several common safe and unsafe early termination techniques from the literature fail to provide any significant performance benefits.
更多
查看译文
关键词
inverted index, bag-of-visual-words, image retrieval, candidate selection, top-k search, cascade ranking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要