River channel connectivity shifts metabolite composition and dissolved organic matter chemistry

NATURE COMMUNICATIONS(2019)

引用 62|浏览17
暂无评分
摘要
Biogeochemical processing of dissolved organic matter (DOM) in headwater rivers regulates aquatic food web dynamics, water quality, and carbon storage. Although headwater rivers are critical sources of energy to downstream ecosystems, underlying mechanisms structuring DOM composition and reactivity are not well quantified. By pairing mass spectrometry and fluorescence spectroscopy, here we show that hydrology and river geomorphology interactively shape molecular patterns in DOM composition. River segments with a single channel flowing across the valley bottom export DOM with a similar chemical profile through time. In contrast, segments with multiple channels of flow store large volumes of water during peak flows, which they release downstream throughout the summer. As flows subside, losses of lateral floodplain connectivity significantly increase the heterogeneity of DOM exported downstream. By linking geomorphologic landscape-scale processes with microbial metabolism, we show DOM heterogeneity increases as a function of fluvial complexity, with implications for ecosystem function and watershed management.
更多
查看译文
关键词
Carbon cycle,Element cycles,Environmental chemistry,Hydrology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要