Switching On Superferromagnetism

PHYSICAL REVIEW MATERIALS(2019)

引用 6|浏览69
暂无评分
摘要
Recent results in electric-field control of magnetism have paved the way for the design of alternative magnetic and spintronic devices with enhanced functionalities and low power consumption. Among the diversity of reported magnetoelectric effects, the possibility of switching on and off long-range ferromagnetic ordering close to room temperature stands out. Its binary character opens up the avenue for its implementation in magnetoelectric data storage devices. Here we show the possibility to locally switch on superferromagnetism in a wedge-shaped polycrystalline Fe thin film deposited on top of a ferroelectric and ferroelastic BaTiO3 substrate. A superparamagnetic to superferromagnetic transition is observed for confined regions for which a voltage applied to the ferroelectric substrate induces a sizable strain. We argue that electric-field-induced changes of magnetic anisotropy lead to an increase of the critical temperature separating the two regimes so that superparamagnetic regions develop collective long-range superferromagnetic behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要