Demonstration Of Critical Role Of Grin3a In Nicotine Dependence Through Both Genetic Association And Molecular Functional Studies

ADDICTION BIOLOGY(2020)

引用 8|浏览18
暂无评分
摘要
Nicotine dependence (ND) is a chronic disease with catastrophic effects on individual and public health. The glutamate receptor subunit gene, ionotropic N-methyl-d-aspartate 3A (GRIN3A), encodes a crucial subunit of N-methyl-d-aspartate receptors (NMDARs), which play an essential role in synaptic plasticity in the brain. Although various variants of GRIN3A have been associated with ND in European-American and African-American samples, no study has been reported for the association between GRIN3A and ND in Chinese Han population. We performed an association study of 16 single nucleotide polymorphisms (SNPs) in GRIN3A with ND in 2616 Chinese individuals. SNP-based association analysis indicated that SNP rs1323423 was significantly associated with the Fagerstrom Test for Nicotine Dependence (FTND) score after correction for multiple testing (P = 0.0026). Haplotype-based association analysis revealed that Block 3, formed by rs1323423-rs10989591, was significantly associated with the FTND score after correction for multiple testing (global P = 0.0183). Furthermore, luciferase reporter assay demonstrated that the DNA region containing rs1323423 was an enhancer element, the activity of which was significantly impacted by rs1323423 genotype. Considering that rs1323423 is located in a potential enhancer region, we performed GRIN3A editing in HEK293T cells with CRISPR/Cas9 and found that the DNA region around rs1323423 has a regulatory function and the expression of GRIN3A affects the expression of other NMDA subunits. Moreover, we demonstrated that nicotine at a concentration of 100 mu M decreased expression of GRIN3A in SH-SY5Y and HEK293T cells at the RNA and protein level, respectively. This study provides novel evidence for the involvement of GRIN3A in ND.
更多
查看译文
关键词
CRISPR, Cas9, genetic association, GRIN3A, nicotine dependence, tobacco smoking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要