Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea

Marine and Petroleum Geology(2016)

引用 75|浏览34
暂无评分
摘要
The Qiongdongnan Basin, South China Sea has received huge thickness (>12 km) of Tertiary-Quaternary sediments in the deepwater area to which great attention has been paid due to the recent discoveries of the SS22-1 and the SS17-2 commercial gas fields in the Pliocene-Upper Miocene submarine canyon system with water depth over 1300 m. In this study, the geochemistry, origin and accumulation models of these gases were investigated. The results reveal that the gases are predominated by hydrocarbon gases (98%–99% by volume), with the ratio of C1/C1-5 ranging from 0.92 to 0.94, and they are characterized by relatively heavy δ13C1 (−36.8‰ to −39.4‰) and δDCH4 values (−144‰ to −147‰), similar to the thermogenic gases discovered in the shallow water area of the basin. The C5-7 light hydrocarbons associated with these gases are dominated by isoparaffins (35%–65%), implying an origin from higher plants. For the associated condensates, carbon isotopic compositions and high abundance of oleanane and presence of bicadinanes show close affinity with those from the YC13-1 gas field in the shallow water area. All these geochemical characteristics correlate well with those found in the shales of the Oligocene Yacheng Formation in the Qiongdongnan Basin. The Yacheng Formation in the deepwater area has TOC values in the range of 0.4–21% and contains type IIb–III gas-prone kerogens, indicating an excellent gas source rock. The kinetic modeling results show that the δ13C1 values of the gas generated from the Yacheng source rock since 3 or 4 Ma are well matched with those of the reservoir gases, indicating that the gas pool is young and likely formed after 4 Ma. The geologic and geochemical data show that the mud diapirs and faults provide the main pathways for the upward migration of gases from the deep gas kitchen into the shallow, normally pressured reservoirs, and that the deep overpressure is the key driving force for the vertical and lateral migration of gas. This gas migration pattern implies that the South Low Uplift and the No.2 Fault zone near the deepwater area are also favorable for gas accumulation because they are located in the pathway of gas migration, and therefore more attention should be paid to them in the future.
更多
查看译文
关键词
Gas origin,Gas accumulation model,Deepwater area,Qiongdongnan basin,South China sea
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要