谷歌浏览器插件
订阅小程序
在清言上使用

Chemical Environmental Effects on Muon Transfer Process in Low Pressure Mixture Gases; H2+CO and H2+CO2

RADIOISOTOPES(2016)

引用 1|浏览8
暂无评分
摘要
A muonic hydrogen atom, which consists of a negative muon and a proton, behaves as an electrically neutral particle. As such, it can approach another nucleus without Coulomb repulsion, allowing the muon to be directly transferred to inner muon levels of the nucleus and form a muonic atom. We studied muonic atom formation via this muon transfer process in two chemical environments; CO and CO2 (CO has one oxygen atom and one triple bond, and CO2 has two oxygen and two double bond), to examine the effects of the environments on muonic atom formation. The muon capture probability and intensity pattern of muonic Xrays for carbon and oxygen atoms were determined through measurement of muonic Xrays emitted after muonic atom formation. By comparing the results of CO and CO2 to each other, we found that the muon capture probabilities and initial muon quantum levels for carbon and oxygen atoms resulting from the muon transfer process do not depend on the chemical environment, though a significant effect of the chemical environmental was observed for the direct muon capture process. The effect of the chemical environmental in muonic atom formation via the muon transfer process is too small to detect statistically significant in our experimental system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要