Safety Verification of Interconnected Hybrid Systems Using Barrier Certificates

MATHEMATICAL PROBLEMS IN ENGINEERING(2016)

引用 2|浏览32
暂无评分
摘要
Safety verification determines whether any trajectory starting from admissible initial states would intersect with a set of unsafe states. In this paper, we propose a numerical method for verifying safety of a network of interconnected hybrid dynamical systems with a state constraint based on bilinear sum-of-squares programming. The safety verification is conducted by the construction of a function of states called barrier certificate. We consider a finite number of interconnected hybrid systems satisfying the input-to-state property and the networked interconnections satisfying a dissipativity property. Through constructing a barrier certificate for each subsystem and imposing dissipation-inequality-like constraints on the interconnections, safety verification is formulated as a bilinear sum-of-squares feasibility problem. As a result, safety of the interconnected hybrid systems could be determined by solving an optimization problem, rather than solving differential equations. The proposed method makes it possible to verify the safety of interconnected hybrid systems, which is demonstrated by a numerical example.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要