Intercomparison of Unmanned Aircraftborne and Mobile Mesonet Atmospheric Sensors

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY(2016)

引用 13|浏览25
暂无评分
摘要
Results are presented from an intercomparison of temperature, humidity, and wind velocity sensors of the Tempest unmanned aircraft system (UAS) and the National Severe Storms Laboratory (NSSL) mobile mesonet (NSSL-MM). Contemporaneous evaluation of sensor performance was facilitated by mounting the Tempest wing with attached sensors to the NSSL-MM instrument rack such that the Tempest and NSSL-MM sensors could collect observations within a nearly identical airstream. This intercomparison was complemented by wind tunnel simulations designed to evaluate the impact of the mobile mesonet vehicle on the observed wind velocity. The intercomparison revealed strong correspondence between the temperature and relative humidity (RH) data collected by the Tempest and the NSSL-MM with differences generally within sensor accuracies. Larger RH differences were noted in the presence of heavy precipitation; however, despite the exposure of the Tempest temperature and humidity sensor to the airstream, there was no evidence of wet bulbing within precipitation. Wind tunnel simulations revealed that the simulated winds at the location of the NSSL-MM wind monitor were similar to 4% larger than the expected winds due to the acceleration of the flow over the vehicle. Simulated vertical velocity exceeded 1 m s(-1) for tunnel inlet speeds typical of a vehicle moving at highway speeds. However, the theoretical noncosine reduction in winds that should result from the impact of vertical velocity on the laterally mounted wind monitor was found to be negligible across the simulations. Comparison of the simulated and observed results indicates a close correspondence, provided the crosswind component of the flow is small.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要