The growth rate of tri-colored sum-free sets

arXiv: Combinatorics, pp. 37342018.

Cited by: 6|Bibtex|Views26|DOI:https://doi.org/10.19086/da.3734
Other Links: academic.microsoft.com|arxiv.org

Abstract:

Let $G$ be an abelian group. A tri-colored sum-free set in $G^n$ is a collection of triples $({bf a}_i, {bf b}_i, {bf c}_i)$ in $G^n$ such that ${bf a}_i+{bf b}_j+{bf c}_k=0$ if and only if $i=j=k$. Fix a prime $q$ and let $C_q$ be the cyclic group of order $q$. Let $theta = min_{rhou003e0} (1+rho+cdots + rho^{q-1}) rho^{-(q-1)/3}$. Blasi...More

Code:

Data:

Full Text
Your rating :
0

 

Tags
Comments