P/CAF mediates PAX3-FOXO1-dependent oncogenesis in alveolar rhabdomyosarcoma.

JOURNAL OF PATHOLOGY(2016)

引用 19|浏览17
暂无评分
摘要
Alveolar rhabdomyosarcoma (ARMS) is an aggressive paediatric cancer of skeletal muscle with poor prognosis. A PAX3-FOXO1 fusion protein acts as a driver of malignancy in ARMS by disrupting tightly coupled but mutually exclusive pathways of proliferation and differentiation. While PAX3-FOXO1 is an attractive therapeutic target, no current treatments are designed to block its oncogenic activity. The present work shows that the histone acetyltransferase P/CAF (KAT2B) is overexpressed in primary tumours from ARMS patients. Interestingly, in fusion-positive ARMS cell lines, P/CAF acetylates and stabilizes PAX3-FOXO1 rather than MyoD, a master regulator of muscle differentiation. Silencing P/CAF, or pharmacological inhibition of its acetyltransferase activity, down-regulates PAX3-FOXO1 levels concomitant with reduced proliferation and tumour burden in xenograft mouse models. Our studies identify a P/CAF-PAX3-FOXO1 signalling node that promotes oncogenesis and may contribute to MyoD dysfunction in ARMS. This work exemplifies the therapeutic potential of targeting chromatin-modifying enzymes to inhibit fusion oncoproteins that are a frequent event in sarcomas. Copyright (c) 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
更多
查看译文
关键词
cancer,epigenetics,histone acetyltransferase,stability,post-translational modifications
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要