Tandem Architecture of Perovskite and Cu(In,Ga)(S,Se)2 Created by Solution Processes for Solar Cells

ADVANCED OPTICAL MATERIALS(2016)

引用 15|浏览12
暂无评分
摘要
Integrating tandem solar cell architectures into devices can improve their power conversion efficiency (PCE) by overcoming the limited incident light absorption range of a single absorber and reducing the thermalization loss. Here, fabricated tandem solar cells are successfully fabricated employing different absorber materials, in this case perovskite and Cu(In,Ga)(S,Se)(2) (CIGS) as top and bottom cells, respectively. For cost effectiveness most tandem device manufacturing processes are achieved by solution-based methods, which even provide the electrode layers. Using such a process to create a tandem device, a PCE of 8.34% for the semitransparent perovskite top solar cell and 2.48% for the CIGS bottom solar cell is obtained, resulting in an overall efficiency of 10.82% for the four-terminal tandem device. This result highlights the potential of this solution-based tandem configuration as a way to facilitate the creation of simple and inexpensive efficient light-utilizing solar cell devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要