Triple Isotope Effects Support Concerted Hydride And Proton Transfer And Promoting Vibrations In Human Heart Lactate Dehydrogenase

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2016)

引用 24|浏览7
暂无评分
摘要
Transition path sampling simulations have proposed that human heart lactate dehydrogenase (LDH) employs protein promoting vibrations (PPVs) on the femtosecond (fs) to picosecond (ps) time scale to promote crossing of the chemical barrier. This chemical barrier involves both hydride and proton transfers to pyruvate to form L-lactate, using reduced nicotinamide adenine dinucleotide (NADH) as the cofactor. Here we report experimental evidence from three types of isotope effect experiments that support coupling of the promoting vibrations to barrier crossing and the coincidence of hydride and proton transfer. We prepared the native (light) LDH and a heavy LDH labeled with C-13, N-15, and nonexchangeable H-2 (D) to perturb the predicted PPVs. Heavy LDH has slowed chemistry in single turnover experiments, supporting a contribution of PPVs to transition state formation. Both the [4-H-2]NADH (NADD) kinetic isotope effect and the D2O solvent isotope effect were increased in dual-label experiments combining both NADD and D2O, a pattern maintained with both light and heavy LDHs. These isotope effects support concerted hydride and proton transfer for both light and heavy LDHs. Although the transition state barrier-crossing probability is reduced in heavy LDH, the concerted mechanism of the hydride-proton transfer reaction is not altered. This study takes advantage of triple isotope effects to resolve the chemical mechanism of LDH and establish the coupling of fs-ps protein dynamics to barrier crossing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要