Functional Characterization of At-Level Hypersensitivity in Patients With Spinal Cord Injury.

The Journal of Pain(2017)

引用 14|浏览8
暂无评分
摘要
At-level and above-level hypersensitivity was assessed in patients with chronic complete thoracic spinal cord injury (SCI). Patients were classified using somatosensory mapping (brush, cold, pinprick) and assigned into 2 groups (ie, patients with at-level hypersensitivity [SCIHs, n = 8] and without at-level hypersensitivity [SCINHs, n = 7]). Gender and age-matched healthy subjects served as controls. Quantitative sensory testing (QST), electrically- and histamine-induced pain and itch, laser Doppler imaging, and laser-evoked potentials (LEP) were recorded at-level and above-level in SCI-patients. Six of 8 SCIHs, but 0 of 7 SCINHs patients suffered from neuropathic below-level pain. Clinical sensory mapping revealed spreading of hypersensitivity to more cranial areas (above-level) in 3 SCIHs. Cold pain threshold measures confirmed clinical hypersensitivity at-level in SCIHs. At-level and above-level hypersensitivity to electrical stimulation did not differ significantly between SCIHs and SCINHs. Mechanical allodynia, cold, and pin-prick hypersensitivity did not relate to impaired sensory function (QST), axon reflex flare, or LEPs. Clinically assessed at-level hypersensitivity was linked to below-level neuropathic pain, suggesting neuronal hyperexcitability contributes to the development of neuropathic pain. However, electrically evoked pain was not significantly different between SCI patients. Thus, SCI-induced enhanced excitability of nociceptive processing does not necessarily lead to neuropathic pain. QST and LEP revealed no crucial role of deafferentation for hypersensitivity development after SCI.
更多
查看译文
关键词
Neuropathic pain,at-level hypersensitivity,sensory mapping,quantitative sensory testing,axon reflex flare,laser-evoked potentials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要