Lower solar atmosphere and magnetism at ultra-high spatial resolution

arXiv: Solar and Stellar Astrophysics(2016)

引用 0|浏览14
暂无评分
摘要
We present the scientific case for a future space-based telescope aimed at very high spatial and temporal resolution imaging of the solar photosphere and chromosphere. Previous missions (e.g., HINODE, SUNRISE) have demonstrated the power of observing the solar photosphere and chromosphere at high spatial resolution without contamination from Earth's atmosphere. We argue here that increased spatial resolution (from currently 70 km to 25 km in the future) and high temporal cadence of the observations will vastly improve our understanding of the physical processes controlling solar magnetism and its characteristic scales. This is particularly important as the Sun's magnetic field drives solar activity and can significantly influence the Sun-Earth system. At the same time a better knowledge of solar magnetism can greatly improve our understanding of other astrophysical objects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要