Understanding the shape memory behavior of thermoplastic polyurethane elastomers with coarse-grained molecular dynamics simulations

MRS ADVANCES(2017)

引用 3|浏览5
暂无评分
摘要
We perform molecular dynamics (MD) simulations to understand thermally triggered shape memory behavior of a thermoplastic polyurethane (TPU) elastomer with an enhanced coarse-grained (CG) model. Hard and soft phases of shape memory polymers (SMPs) are known as fixed and reversible phase, respectively. Fixity depends on the content of hard segments due to their restricted mobility. On the contrary, recovery depends on the dynamic motion of the soft segments as well the degree of cross-linking, which is also affected by the quantity of hard segment. Several CG models of the TPU are constructed varying the weight percentage of soft segments to observe their effects on shape recovery and fixity. All of the models are equilibrated at 300K (above glass transition, Tg: 200–250 K) and deformed under uniaxial loading with NPT (isothermal-isobaric) ensembles. The deformed state is cooled to 100K (below Tg) and further equilibrated to estimate the shape fixity. Shape recovery is predicted by heating and equilibrating the structures back to 300K. By the end of this study, we may answer how much the shape fixities and recoveries are changed for varying concentration of hard segments from thermomechanical cycles with CGMD simulations.
更多
查看译文
关键词
thermoplastic polyurethane elastomers,shape memory behavior,molecular dynamics simulations,molecular dynamics,coarse-grained
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要