Investigation of the laser cooling cycle in the time domain (Conference Presentation)

Proceedings of SPIE(2017)

引用 0|浏览2
暂无评分
摘要
Upon excitation of a material below its fundamental transition, cooling of the lattice results if the subsequent emission is predominantly radiative. Despite overwhelming experimental success, it remains a challenge to understand the microscopic nature of detrimental processes that can even prevent cooling. We apply ultrafast spectroscopy to resolve the laser refrigeration cycle in the time domain. Strong evidence for lattice cooling on picosecond timescales in bulk GaAs/InGaP double-heterostructures and GaAs/AlGaAs quantum wells establishes the non-local nature of the parasitic mechanisms. Further precision measurements investigating long-time dynamics are currently underway to resolve detrimental heating in bulk GaAs for the first time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要