Cutting Edge: Origins, Recruitment, And Regulation Of Cd11c(+) Cells In Inflamed Islets Of Autoimmune

JOURNAL OF IMMUNOLOGY(2017)

引用 18|浏览14
暂无评分
摘要
In NOD mice, CD11c(+) cells increase greatly with islet inflammation and contribute to autoimmune destruction of pancreatic beta cells. In this study, we investigated their origin and mechanism of recruitment. CD11c(+) cells in inflamed islets resembled classical dendritic cells based on their transcriptional profile. However, the majority of these cells were not from the Zbtb46-dependent dendritic-cell lineage. Instead, monocyte precursors could give rise to CD11c(+) cells in inflamed islets. Chemokines Ccl5 and Ccl8 were persistently elevated in inflamed islets and the influx of CD11c(+) cells was partially dependent on their receptor Ccr5. Treatment with islet Agspecific regulatory T cells led to a marked decrease of Ccl5 and Ccl8, and a reduction of monocyte recruitment. These results implicate a monocytic origin of CD11c(+) cells in inflamed islets and suggest that therapeutic regulatory T cells directly or indirectly regulate their influx by altering the chemotactic milieu in the islets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要