Fast Algorithms for Learning Latent Variables in Graphical Models

arXiv: Machine Learning(2017)

引用 24|浏览11
暂无评分
摘要
We study the problem of learning latent variables in Gaussian graphical models. Existing methods for this problem assume that the precision matrix of the observed variables is the superposition of a sparse and a low-rank component. In this paper, we focus on the estimation of the low-rank component, which encodes the effect of marginalization over the latent variables. We introduce fast, proper learning algorithms for this problem. In contrast with existing approaches, our algorithms are manifestly non-convex. We support their efficacy via a rigorous theoretical analysis, and show that our algorithms match the best possible in terms of sample complexity, while achieving computational speed-ups over existing methods. We complement our theory with several numerical experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要