Benjamin Franklin and the dissectible capacitor: his observations might surprise you

EUROPEAN JOURNAL OF PHYSICS(2017)

引用 0|浏览2
暂无评分
摘要
Although he is best known as an American statesman, Benjamin Franklin also made important contributions to electrical science in the mid-18th century. At the time, the Leyden jar, the first capacitor, had just been invented, and Franklin performed experiments to determine the source of the spark and shock that occurred on discharge of the jar. In these experiments, he used Leyden jars and Franklin squares (parallel-plate capacitors) that could be disassembled and reassembled. These devices later became known as dissectible capacitors. One of the more interesting results Franklin obtained was that an electrified capacitor containing a dielectric could be disassembled, the electrodes discharged, and the capacitor reassembled without sacrificing its ability to produce a spark and shock. This result is contrary to what one expects from today's theory for capacitors involving ideal dielectrics ( those possessing polarization and no other special properties such as surface effects): all charge is on the electrodes, and once they are discharged the capacitor is no longer electrified. During the years since Franklin's observations, additional experiments have been performed and various explanations offered for the cause of Franklin's results. In this paper, we first review the details for Franklin's experiments, and then we describe a very simple experiment that can be performed today with a parallel-plate capacitor that gives results similar to Franklin's. Next we discuss the experiments of Addenbrooke and Zeleny, performed in the first half of the 20th century, which provide plausible explanations for Franklin's observations. Finally we describe the relationship of Franklin's dissectible parallel- plate capacitor to another important 18th century invention-Volta's generator of static electricity, the electrophorus.
更多
查看译文
关键词
history,electrostatics,capacitor,Benjamin Franklin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要