AI帮你理解科学
AI 精读
AI抽取本论文的概要总结
微博一下:
Filtered Hyperbolic Moment Method for the Vlasov Equation
Journal of Scientific Computing, no. 2 (2019): 969.0-991.0
EI
摘要
In this paper, we investigate the effect of the filter for the hyperbolic moment equations (HME) (Cai et al. in Commun Pure Appl Math 67(3):464–518, 2014; Cai et al. in SIAM J Sci Comput 35(6):A2807–A2831, 2013) of the Vlasov–Poisson equations and propose a novel quasi time-consistent filter to suppress the numerical recurrence effect. By...更多
代码:
数据:
简介
- The Vlasov equation is the fundamental kinetic equation modeling of the collisionless plasma.
- It describes the time evolution of the distribution function f (t, x, v) of a population of charged particles that responds to the self-consistent electromagnetic fields.
- The distribution function f (t, x, v) is the number density of the particles at the time t and position x ∈ ⊂ RD with the microscopic velocity v ∈ RD [48].
重点内容
- The Vlasov equation is the fundamental kinetic equation modeling of the collisionless plasma
- Using the same argument in Sect. 3.2.1, it can be claimed that the filtered hyperbolic moment equations (HME) is a solver of the Vlasov equation and its solution converges to that of the Vlasov equation as M → ∞
- To study the convergence of the filtered HME and whether the filter changes the Landau damping rate, we provided two viewpoints: artificial collision operator in Sect. 3.2.1 and artificial dissipation in Sect. 3.2.2 to show that the filtered HME is a solver of the Vlasov equation and can predict the correct Landau damping rate and frequency
- We presented a filtered HME for the Vlasov–Poisson equations to suppress the recurrence effects
- Due to the careful construction, the filter preserves most of the physical properties of HME, including the conservation of mass, momentum and energy, Galilean invariant and convergence to Vlasov–Poisson equations (VP)
- Two viewpoints on the quasi time-consistent filter show that the filtered HME is a solver of the Vlasov equation, and it can predict correct physical phenomena described by VP
方法
- Numerical methods for solving the
Vlasov equation have been extensively studied, see for instance [5,24,29,49] and references therein. - With the exponential growth of computing power, the Eulerian numerical methods attract more and more researchers’ attention, and a lot of methods are developed, for example, the continuous finite element methods [49], finite difference methods [14,22], finite volume methods [23], discontinuous Galerkin methods [29,43], the semi-Lagrangian methods [46] and spectral methods [6,10,44]
- These methods discretize or approximate the distribution function both in the spatial space and the microscopic velocity space, and they can be used to solve the case that the distribution function has the low-density velocity much more accurately compared to PIC, but may be quite expensive in the high dimension problem
结论
- The authors presented a filtered HME for the Vlasov–Poisson equations to suppress the recurrence effects.
- The quasi time-consistent property guarantees that the solution to the filtered HME is not sensitive to the time step.
- Two viewpoints on the quasi time-consistent filter show that the filtered HME is a solver of the Vlasov equation, and it can predict correct physical phenomena described by VP.
- Numerical simulations demonstrate the power of the filter in suppressing recurrences and producing more accurate solutions.
基金
- Di is supported in part by the Natural Science Foundation of China (Grant Nos. 11771437 and 91630208)
- Wang is supported in part by the Natural Science Foundation of China No 11501042
- Li is supported in part by the National Natural Science Foundation of China (Grant No 9163030002)
引用论文
- Adjerid, S., Flaherty, J.E.: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)
- Armstrong, T.P.: Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10, 1269–1280 (1967)
- Armstrong, T.P., Harding, R.C., Knorr, G., Montgomery, D.: Solution of Vlasov’s equation by transform methods. J. Sci. Comput. 9, 29–86 (1970)
- Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)
- Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (2004)
- Bourdiec, S.L., Vuyst, F.D., Jacquet, L.: Numerical solution of the Vlasov–Poisson system using generalized Hermite functions. Commun. Comput. Phys. 175(8), 528–544 (2006)
- Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)
- Cai, Z., Fan, Y., Li, R.: From discrete velocity model to moment method. Math. Numer. Sin. 38(3), 227–244 (2016)
- Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)
- Cai, Z., Li, R., Wang, Y.: Solving Vlasov equation using NRx x method. SIAM J. Sci. Comput. 35(6), A2807–A2831 (2013)
- Cai, Z., Wang, Y.: Suppression of recurrence in the Hermite-spectral method for transport equations. SIAM J. Numer. Anal. 56(5), 3144–3168 (2018)
- Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov–Poisson system: comparison between implicit Hermite spectral and particle-in-cell methods. Commun. Comput. Phys. 198, 47–58 (2016)
- Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A., et al.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)
- Carrillo, J., Gamba, M., Majorana, A., Shu, C.: A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)
- Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)
- Cheng, Y., Gamba, M., Morrison, J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56, 319–349 (2013)
- Crouseilles, N., Filbet, F.: Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201(2), 546–572 (2004)
- Di, Y., Fan, Y., Li, R.: 13-moment system with global hyperbolicity for quantum gas. J. Stat. Phy. 167(5), 1280–1302 (2017)
- Di, Y., Kou, Z., Li, R.: High order moment closure for Vlasov–Maxwell equations. Front. Math. China 10(5), 1087–1100 (2015)
- Eliasson, B.: Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions theory and applications. Transp. Theory Stat. Phys. 39(5–7), 387–465 (2010)
- Ellasson, B.: Outflow boundary conditions for Fourier transformed one-dimensional Vlasov–Poisson system. J. Sci. Comput. 16, 1–28 (2001)
- Fatemi, E., Odeh, F.: Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices. J. Comput. Phys. 108(2), 209–217 (1993)
- Filbet, F.: Convergence of a finite volume scheme for the Vlasov–Poisson system. SIAM J. Numer. Anal. 39(4), 1146–1169 (2001)
- Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003)
- Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)
- Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)
- Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)
- Grant, F.C., Feix, M.R.: Fourier-Hermite solutions of the Vlasov equations in the linearized limit. Phy. Fluids 10(4), 696–702 (1967)
- Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)
- Hesthaven, J.S., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008) 31. 25(1), 1–32 (1996)
- 32. Hou, T., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)
- 33. Joyce, G., Knorr, G., Meier, H.K.: Numerical integration methods of the Vlasov equation. J. Comput. Phys. 8(1), 53–63 (1971)
- 34. Kanevsky, A., Carpenter, K., Hesthaven, J.S.: Idempotent filtering in spectral and spectral element methods. J. Comput. Phys. 220(1), 41–58 (2006)
- 35. Klimas, A.J.: A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68(1), 202–226 (1987)
- 36. Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110(1), 150–163 (1994)
- 37. Kreiss, H.O., Oliger, J.: Stability of the Fourier method. SIAM J. Numer. Anal. 16, 421–433 (1979)
- 38. Landau, L.: On the vibrations of the electronic plasma. Eur. J. Org. Chem. 2006(2), 498–506 (1946) 39. McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)
- 40. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Second Edition, Volume 37 of Springer tracts in natural philosophy. Springer, New York (1998)
- 41. Ng, C.S., Bhattacharjee, A., Skiff, F.: Complete spectrum of kinetic eigenmodes for plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 92(6), 065002 (2004)
- 42. Parker, J.T., Dellar, P.J.: Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit. J. Plasma Phys. 81(02), 305810203 (2015)
- 43. Qiu, J., Shu, C.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)
- 44. Schumer, J.W., Holloway, J.P.: Vlasov simulation using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)
- 45. Shoucri, M., Knorr, G.: Numerical integration of the Vlasov equation. J. Comput. Phys. 14(1), 84–92 (1974) Journal of Scientific Computing 46.
- Sonnendrücker, E., Roche, J., Betrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of Vlasov equations. J. Comput. Phys 149(2), 201–220 (1998)
- 47. Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM J. Multiscale Model. Simul. 5(3), 695–728 (2006)
- 48. Vlasov, A.A.: On vibration properties of electron gas. J. Exp. Theor. Phys. 8(3), 291 (1938)
- 49. Zaki, S.I., Gardner, R.T., Boyd, T.J.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)
标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn