On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don't Worry About its Nonsmooth Loss Function

uncertainty in artificial intelligence(2020)

引用 23|浏览189
暂无评分
摘要
Many machine learning techniques sacrifice convenient computational structures to gain estimation robustness and modeling flexibility. However, by exploring the modeling structures, we find these "sacrifices" do not always require more computational efforts. To shed light on such a "free-lunch" phenomenon, we study the square-root-Lasso (SQRT-Lasso) type regression problem. Specifically, we show that the nonsmooth loss functions of SQRT-Lasso type regression ease tuning effort and gain adaptivity to inhomogeneous noise, but is not necessarily more challenging than Lasso in computation. We can directly apply proximal algorithms (e.g. proximal gradient descent, proximal Newton, and proximal quasi-Newton algorithms) without worrying about the nonsmoothness of the loss function. Theoretically, we prove that the proximal algorithms enjoy fast local convergence with high probability. Our numerical experiments also show that when further combined with the pathwise optimization scheme, the proximal algorithms significantly outperform other competing algorithms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要