A General Maximum Progression Model to Concurrently Synchronize Left-Turn and through Traffic Flows on an Arterial

MATHEMATICAL PROBLEMS IN ENGINEERING(2018)

引用 1|浏览9
暂无评分
摘要
In the existing bandwidth-based methods, through traffic flows are considered as the coordination objects and offered progression bands accordingly. However, at certain times or nodes in the road network, when the left-turn traffic flows have a higher priority than the through traffic flows, it would be inappropriate to still provide the progression bands to the through traffic flows; the left-turn traffic flows should instead be considered as the coordination objects to potentially achieve better control. Considering this, a general maximum progression model to concurrently synchronize left-turn and through traffic flows is established by using a time-space diagram. The general model can deal with all the patterns of the left-turn phases by introducing two new binary variables into the constraints; that is, these variables allow all the patterns of the left-turn phases to deal with a single formulation. By using the measures of effectiveness (average delay time, average vehicle stops, and average travel time) acquired by a traffic simulation software, VISSIM, the validity of the general model is verified. The results show that, compared with the MULTIBAND, the proposed general model can effectively reduce the delay time, vehicle stops, and travel time and, thus, achieve better traffic control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要