Dissection of yeast pleiotropic drug resistance regulation reveals links between cell cycle regulation and control of drug pump expression

bioRxiv(2018)

引用 0|浏览22
暂无评分
摘要
Eukaryotes utilize a highly-conserved set of drug efflux transporters to confer pleiotropic drug resistance (PDR). Despite decades of effort interrogating this process, multiple aspects of the PDR process, in particular PDR regulation, remain mysterious. In order to interrogate the regulation of this critical process, we have developed a small-molecule responsive biosensor that couples PDR transcriptional induction to growth rate in Saccharomyces cerevisiae. We applied this system to genome-wide screens for potential PDR regulators using the homozygous diploid deletion collection. These screens identified and characterized a series of genes with significant but previously uncharacterized roles in the modulation of the yeast PDR in addition to recapitulating previously-known factors involved in PDR regulation. Furthermore, we demonstrate that disruptions of the mitotic spindle checkpoint assembly lead to elevated PDR response in response to exposure to certain compounds. These results not only establish our biosensor system as a viable tool to investigate PDR in high-throughput, but also uncovers novel control mechanisms governing PDR response and a previously uncharacterized link between this process and cell cycle regulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要