Electrophoretic Deposition of 10B Nano/Micro Particles in Deep Silicon Trenches for the Fabrication of Solid State Thermal Neutron Detectors

International Journal of High Speed Electronics and Systems(2018)

引用 1|浏览10
暂无评分
摘要
We present a cost effective and scalable approach to fabricate solid state thermal neutron detectors. Electrophoretic deposition technique is used to fill deep silicon trenches with 10B nanoparticles instead of conventional chemical vapor deposition process. Deep silicon trenches with width of 5-6 μm and depth of 60-65 μm were fabricated in a p-type Si (110) wafer using wet chemical etching method instead of DRIE method. These silicon trenches were converted into continuous p-n junction by the standard phosphorus diffusion process. 10B micro/nano particle suspension in ethyl alcohol was used for electrophoretic deposition of particles in deep trenches and iodine was used to change the zeta potential of the particles. The measured effective boron nanoparticles density inside the trenches was estimated to be 0.7 gm cm-3. Under the self-biased condition, the fabricated device showed the intrinsic thermal neutron detection efficiency of 20.9% for a 2.5 × 2.5 mm2 device area.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要