Dynamics Of Photodoped Charge Transfer Insulators

PHYSICAL REVIEW B(2019)

引用 24|浏览11
暂无评分
摘要
We study the dynamics of charge transfer insulators after photoexcitation using the three-band Emery model and a nonequilibrium extension of Hartree-Fock + EDMFT (extended dynamical mean field theory) and GW + EDMFT. While the equilibrium properties are accurately reproduced by the Hartree-Fock treatment of the ligand bands, dynamical correlations are essential for a proper description of the photodoped state. Photodoping leads to a renormalization of the charge transfer gap and to a substantial broadening of the bands. We calculate the time-resolved photoemission spectrum and optical conductivity and find qualitative agreement with experiments. Our formalism enables the realistic description of nonequilibrium phenomena in materials with ligand bands. It provides a tool to explore the optical manipulation of interaction and correlation effects, including insulator-metal and magnetic transitions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要