Observation of nodal-line semimetal with ultracold fermions in an optical lattice

NATURE PHYSICS(2019)

引用 93|浏览16
暂无评分
摘要
The observation of topological phases beyond two dimensions, as widely reported in solid-state systems 1 , 2 , has been an open challenge for ultracold atoms. Although many theoretical schemes have been proposed, the experimental complexity in realizing and characterizing the three-dimensional (3D) band structure has acted as a barrier against experiments achieving this. Here, we realize a 3D spin–orbit coupled nodal-line semimetal in an optical Raman lattice filled with ultracold fermions, and observe the bulk line nodes in the band structure. The realized topological semimetal exhibits an emergent magnetic group symmetry. This allows detection of the nodal lines by effectively reconstructing the 3D topological band from a series of measurements of integrated spin textures, which precisely render spin textures on the parameter-tuned magnetic-group-symmetric planes. The detection technique can be applied generally to explore 3D topological states of similar symmetries. Furthermore, we observe the band inversion lines from topological quench dynamics, which are bulk counterparts of Fermi arc states and connect the Dirac points, reconfirming the realized topological band. Our results demonstrate an approach to effectively observe 3D band topology, and open the way to probe exotic topological physics for ultracold atoms in high dimensions.
更多
查看译文
关键词
Quantum simulation,Topological matter,Ultracold gases,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要