Bayesian sparse reconstruction: a brute-force approach to astronomical imaging and machine learning.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2019)

引用 19|浏览21
暂无评分
摘要
We present a principled Bayesian framework for signal reconstruction, in which the signal is modelled by basis functions whose number (and form, if required) is determined by the data themselves. This approach is based on a Bayesian interpretation of conventional sparse reconstruction and regularization techniques, in which sparsity is imposed through priors via Bayesian model selection. We demonstrate our method for noisy one- and two-dimensional signals, including astronomical images. Furthermore, by using a product-space approach, the number and type of basis functions can be treated as integer parameters and their posterior distributions sampled directly. We show that order-of-magnitude increases in computational efficiency are possible from this technique compared to calculating the Bayesian evidences separately, and that further computational gains are possible using it in combination with dynamic nested sampling. Our approach can also be readily applied to neural networks, where it allows the network architecture to be determined by the data in a principled Bayesian manner by treating the number of nodes and hidden layers as parameters.
更多
查看译文
关键词
methods: data analysis,methods: numerical,methods: statistical,techniques: image processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要