Melamine Formaldehyde - Metal Organic Gel Interpenetrating Polymer Network Derived Intrinsic Fe-N- Doped Porous Graphitic Carbon Electrocatalysts for Oxygen Reduction Reaction

NEW JOURNAL OF CHEMISTRY(2018)

引用 18|浏览9
暂无评分
摘要
Fe, N doped porous graphitic carbon electrocatalyst (Fe-MOG-MF-C), obtained by pyrolysis of an Interpenetrating Polymer Network (IPN) comprised of melamine formaldehyde (MF as hard segment) and Metal-Organic Gel (MOG as soft segment), exhibited significant Oxygen Reduction Reaction (ORR) activity in alkaline medium. BET surface area analysis of Fe-MOG-MF-C showed high surface area (821 m(2) g(-1)), while TEM, Raman and XPS results confirmed Fe and N co-doping. Furthermore, a modulated porous morphology with a higher degree of surface area (950 m(2) g(-1)) has been accomplished for the system (Fe-MOG-MFN-C) when aided by a sublimable porogen, such as naphthalene. XPS results further demonstrated that these systems exhibited a better degree of distribution of graphitic N and an onset potential value of 0.91 V vs. RHE in 0.1 M KOH solution following an efficient four-electron ORR pathway. The electrocatalytic activity of Fe-MOG-MFN-C is superior to that of Fe-MOG-MF-C by virtue of its higher graphitic N content and surface area. Thus, the study presents a new class of IPN derived MF-MOG nanocomposites with the potential to generate extended versions of in situ Fe-N doped porous graphitic carbon structures with superior ORR activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要