谷歌浏览器插件
订阅小程序
在清言上使用

Resilience of the intestinal microbiota following pathogenic bacterial infection is independent of innate immunity mediated by NOD1 or NOD2.

Microbes and Infection(2016)

引用 20|浏览21
暂无评分
摘要
The innate immune receptors, NOD1 and NOD2, are key regulators of intestinal homeostasis. NOD2 deficiency is linked to increased risk for Crohn's disease, a type of inflammatory bowel disease characterized by chronic inflammatory pathology and dysbiosis within resident microbial communities. However, the relationship between NOD protein-regulated immune functions and dysbiosis remains unclear. We hypothesized that the relationship between NOD1 or NOD2 deficiency and altered community structure during chronic disease may arise via NOD-dependent impairment of community resilience over time. Using the Salmonella ΔaroA model of chronic colitis with littermate mice to control for environmental influences on the microbiota, we show that NOD proteins exert a relatively minor impact on the chronic inflammatory environment and do not significantly contribute to bacterial abundance or community resilience following infection. Rather, temporal shifts in relative abundance of targeted bacterial groups correlated with inflammatory phenotype driven by presence of the pathogen and the ensuing complex immune response.
更多
查看译文
关键词
Salmonella ΔaroA,Chronic colitis model,Innate receptors,NOD proteins,Bacterial community structure,Temporal dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要