Mask effect in nano-selective- area-growth by MOCVD on thickness enhancement, indium incorporation, and emission of InGaN nanostructures on AlN-buffered Si(111) substrates

OPTICAL MATERIALS EXPRESS(2017)

引用 4|浏览26
暂无评分
摘要
In this paper, we studied the effect of temperature and mask margin size on optical emission and growth rate enhancement (GRE) of InGaN grown by metal organic chemical vapor deposition (MOCVD) and nano-selective-area growth (NSAG) on AlN-buffered Si(111). For all mask geometries and temperatures, NSAG produced 90% single-crystal InGaN nanopyramids with smooth facets, perfect selectivity, and 1.2 times the indium composition enhancement (23% and 33% for 800 degrees C and 780 degrees C NSAG, respectively) as found in non-NSAG planar growth at the same conditions. The vapor phase diffusion model was found to be insufficient to predict NSAG GRE, and we propose an explanation combining mechanisms from the vapor phase diffusion with surface migration models. A two-peak emission was noted for all NSAG. The total and relative intensities of the two peaks was found to be strongly dependent upon both temperature and local indium precursor concentration during growth, the latter of which varies based on mask margin size. In NSAG grown at lower temperature and with higher local indium precursor concentration, the bluer of the two peaks was more dominant and the overall emission intensity was higher. InGaN nanopyramids were chemically uniform, ruling out phase separation as origin of the double-peak. We propose an explanation based on the sudden transition from strained to relaxed growth moderated by temperature and local indium precursor concentration. (C) 2017 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要