Domain Space Transfer Extreme Learning Machine for Domain Adaptation.

IEEE transactions on cybernetics(2019)

引用 91|浏览77
暂无评分
摘要
Extreme learning machine (ELM) has been applied in a wide range of classification and regression problems due to its high accuracy and efficiency. However, ELM can only deal with cases where training and testing data are from identical distribution, while in real world situations, this assumption is often violated. As a result, ELM performs poorly in domain adaptation problems, in which the training data (source domain) and testing data (target domain) are differently distributed but somehow related. In this paper, an ELM-based space learning algorithm, domain space transfer ELM (DST-ELM), is developed to deal with unsupervised domain adaptation problems. To be specific, through DST-ELM, the source and target data are reconstructed in a domain invariant space with target data labels unavailable. Two goals are achieved simultaneously. One is that, the target data are input into an ELM-based feature space learning network, and the output is supposed to approximate the input such that the target domain structural knowledge and the intrinsic discriminative information can be preserved as much as possible. The other one is that, the source data are projected into the same space as the target data and the distribution distance between the two domains is minimized in the space. This unsupervised feature transformation network is followed by an adaptive ELM classifier which is trained from the transferred labeled source samples, and is used for target data label prediction. Moreover, the ELMs in the proposed method, including both the space learning ELM and the classifier, require just a small number of hidden nodes, thus maintaining low computation complexity. Extensive experiments on real-world image and text datasets are conducted and verify that our approach outperforms several existing domain adaptation methods in terms of accuracy while maintaining high efficiency.
更多
查看译文
关键词
Training,Testing,Distributed databases,Adaptation models,Neural networks,Image reconstruction,Task analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要