Photo-Chemically Directed Self-Assembly of Carbon Nanotubes on Surfaces

arXiv: Chemical Physics(2017)

引用 23|浏览67
暂无评分
摘要
Transistors incorporating single-wall carbon nanotubes (CNTs) as the channel material are used in a variety of electronics applications. However, a competitive CNT-based technology requires the precise placement of CNTs at predefined locations of a substrate. One promising placement approach is to use chemical recognition to bind CNTs from solution at the desired locations on a surface. Producing the chemical pattern on the substrate is challenging. Here we describe a one-step patterning approach based on a highly photosensitive surface monolayer. The monolayer contains chromophopric group as light sensitive body with heteroatoms as high quantum yield photolysis center. As deposited, the layer will bind CNTs from solution. However, when exposed to ultraviolet (UV) light with a low dose (60 mJ/cm2) similar to that used for conventional photoresists, the monolayer cleaves and no longer binds CNTs. These features allow standard, wafer-scale UV lithography processes to be used to form a patterned chemical monolayer without the need for complex substrate patterning or monolayer stamping.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要