Radiative impact of an extreme Arctic biomass-burning event

ATMOSPHERIC CHEMISTRY AND PHYSICS(2018)

引用 24|浏览20
暂无评分
摘要
The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Alesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July-11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of -78.9 and -47.0W m(-2) at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of -43.3W m(-2), estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m(-2). Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average -126 W m(-2)/tau(550) and -71 W m(-2)/tau(550) at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day(-1) inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m(2) s(-2).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要