Optimal Offline Dynamic 2, 3-Edge/Vertex Connectivity

WADS(2019)

引用 2|浏览43
暂无评分
摘要
We give offline algorithms for processing a sequence of 2- and 3-edge and vertex connectivity queries in a fully-dynamic undirected graph. While the current best fully-dynamic online data structures for 3-edge and 3-vertex connectivity require \(O(n^{2/3})\) and O(n) time per update, respectively, our per-operation cost is only \(O(\log n)\), optimal due to the dynamic connectivity lower bound of Patrascu and Demaine. Our approach utilizes a divide and conquer scheme that transforms a graph into smaller equivalents that preserve connectivity information. This construction of equivalents is closely-related to the development of vertex sparsifiers, and shares important connections to several upcoming results in dynamic graph data structures, including online models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要