A 1-mW Class-AB Amplifier With −101 dB THD+N for High-Fidelity 16 $\Omega$ Headphones in 65-nm CMOS

IEEE Journal of Solid-State Circuits(2019)

引用 10|浏览45
暂无评分
摘要
A low-power class-AB amplifier for high-fidelity headphones is presented. The linearity of a class-AB amplifier strongly depends on the loop gain over the audio band and voltage swing. In this paper, a cascode-driven mesh technique limits the number of high-swing nodes in the output stage, thereby preserving the loop gain of the preceding gain stages. A frequency compensation scheme is proposed that extends the unity-gain bandwidth (UGB) and increases the loop gain at 20 kHz. Combining these two techniques, the amplifier achieves −101.4-dB total harmonic distortion plus noise (THD+N) over the full audio band, the lowest ever reported nonlinearity among sub-milliwatt CMOS class-AB amplifiers. The amplifier delivers 51.2-mW peak power to a $16\Omega \|0.33$ -nF load while consuming 0.97 mW of total static power. It has UGB of 12.3 MHz and SNR of 108 dB. These results are consistent when measured over eight test chips. Compared to the recent prior art, the amplifier exhibits >12 dB better linearity and >14-dB dynamic range. This results in 2.5 $\times $ improvement in figure of merit (FOM = Peak Load Power/(Quiescent Power $\times $ THD+N[%])). It occupies 0.16 mm 2 in a standard 65-nm CMOS.
更多
查看译文
关键词
Gain,Distortion,Linearity,Headphones,Standards,Bandwidth,Damping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要