L-lactate induces specific genome wide alterations of gene expression in cultured bovine granulosa cells

BMC Genomics(2019)

引用 9|浏览22
暂无评分
摘要
Background Previously, we could show that L-lactate affects cultured bovine granulosa cells (GC) in a specific manner driving the cells into an early pre-ovulatory phenotype. Here we studied genome wide effects in L-lactate-treated GC to further elucidate the underlying mechanisms that are responsible for the L-lactate induced transformation. Cultured estrogen producing GC treated either with L-lactate or vehicle control were subjected to mRNA microarray analysis. Results The analysis revealed 487 differentially expressed clusters, representing 461 annotated genes. Of these, 333 (= 318 genes) were identified as up- and 154 (= 143 genes) as down-regulated. As the top up-regulated genes we detected TXNIP , H19 and AHSG as well as our previously established marker transcripts RGS2 and PTX3. The top down-regulated genes included VNN1 , SLC27A2 and GFRA1 , but also MYC and the GC marker transcript CYP19A1 . Pathway analysis with differentially expressed genes indicated “cAMP-mediated signaling” and “Axon guidance signaling” among the most affected pathways. Furthermore, estradiol, progesterone and Vegf were identified as potential upstream regulators. An effector network analysis by IPA provided first hints that processes of “angiogenesis” and “vascularization”, but also “cell movement” appeared to be activated, whereas “organismal death” was predicted to be inhibited. Conclusions Our data clearly show that L-lactate alters gene expression in cultured bovine GC in a broad, but obviously specific manner. Pathway analysis revealed that the mode of L-lactate action in GC initiates angiogenic processes, but also migratory events like cell movement and axonal guidance signaling, thus supporting the transformation of GC into an early luteal phenotype.
更多
查看译文
关键词
Tissue culture, Gene expression, Signaling pathways, mRNA microarray, Angiogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要