Controllable Covalent-bound Nano-Architectures from DNA Frames.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2019)

引用 31|浏览4
暂无评分
摘要
Could one manipulate nanoscale building blocks using chemical reactions like molecular synthesis to yield new supra-nanoscale objects? The precise control over the final architecture might be challenging due to the size mismatch of molecularly scaled reactive functional groups and nanoscale building blocks, which limits a control over the valence and specific locations of reaction spots. Taking advantage of programmable octahedral DNA frame, we report a facile approach of engineering chemical reactions between nanoscale building blocks toward formation of controlled nanoarchitectures. Azide and alkyne moieties were specifically anchored onto desired vertices of DNA frames, providing chemically reactive nanoconstructs with directionally defined valence. Akin to the conventional molecular reactions, the formation of a variety of nanoscale architectures was readily achieved upon mixing of the frames with the different reactive valence and at different stoichiometric ratios. This strategy may open a door for a programmable synthesis of supra-nanoscale structures with complex architectures and diversified functions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要